Beyond Possessive Agency: TikTok, YouTube, and the Inadequacies of GDPR, OSA, DSA, and AIA
DOI:
https://doi.org/10.35295/osls.iisl.2237Palabras clave:
RGPD, OSA, LSA, LIA, gobernanza de algoritmos, nuevo materialismo feminista, redes neuronales profundas, intra-acción y difracciónResumen
Este artículo critica el supuesto fundamental en el que se basan las normativas del Reino Unido y la UE –incluidos el RGPD, la Online Safety Act (Ley de Seguridad en Línea), la Ley de Servicios Digitales y la Ley de Inteligencia Artificial– de que la agencia es un atributo posesivo arraigado en la autonomía individual. Utilizando YouTube y TikTok como casos de estudio, se examina cómo los sistemas avanzados de recomendación impulsados por redes neuronales profundas, bandidos multibrazos y aprendizaje de refuerzo desdibujan los límites entre la agencia del usuario y la influencia de la plataforma. Partiendo de la teoría relacional feminista y de los conceptos de intraacción y difracción de Karen Barad, el artículo sostiene que las plataformas contemporáneas generan una forma distinta y relacional de agencia que opera intersticialmente en el “entremedio” de las acciones de los usuarios y los sistemas algorítmicos. Este poder directivo emergente desafía la legislación vigente en la UE y el Reino Unido en materia de seguridad en línea, que sitúa a las plataformas como herramientas neutrales en lugar de entidades co-constitutivas. El artículo aboga por una reimaginación de las ontologías jurídicas y por un cambio de la agencia posesiva a la gobernanza relacional para abordar las complejidades y los riesgos que plantean los ensamblajes algorítmicos modernos.
Descargas
Metrics
Estadísticas globales ℹ️
30
Visualizaciones
|
11
Descargas
|
41
Total
|
Citas
Adomavicius, G., et al., 2021. Context-aware recommender systems: From foundations to recent developments. In: F. Ricci, L. Rokach and B. Shapira, eds., Recommender Systems Handbook [online]. Cham: Springer, 211–250. Available at: https://doi.org/10.1007/978-1-0716-2197-4_6 DOI: https://doi.org/10.1007/978-1-0716-2197-4_6
Alaimo, S., and Hekman, S.J., 2008. Material Feminisms. Bloomington: Indiana University Press.
Alter, A., 2017. Irresistible: The rise of addictive technology and the business of keeping us hooked. London: Penguin Press.
Aw, E.C.X., and Chuah, S.H.W., 2021. “Stop the unattainable ideal for an ordinary me!” fostering parasocial relationships with social media influencers: The role of self-discrepancy. Journal of Business Research [online], 132, 146–157. Available at: https://doi.org/10.1016/j.jbusres.2021.04.025 DOI: https://doi.org/10.1016/j.jbusres.2021.04.025
Baker, S.A., and Rojek, C., 2020. Lifestyle gurus: Constructing authority and influence online. Hoboken: John Wiley & Sons.
Balishyan, S., and Kompatsiaris, P., 2023. Platform Spiritualities: Entrepreneurial Selves and Post-Feminist Sensibilities of Russian Influencers. Observatorio (OBS*) [online], 17(5). Available at: https://doi.org/10.15847/obsOBS17520232420 DOI: https://doi.org/10.15847/obsOBS17520232420
Barad, K., 2003. Posthumanist performativity: Toward an understanding of how matter comes to matter. Signs: Journal of Women in Culture and Society [online], 28(3), 801–831. Available at: https://doi.org/10.1086/345321 DOI: https://doi.org/10.1086/345321
Barad, K., 2007. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning [online]. Durham: Duke University Press. Available at: https://doi.org/10.2307/j.ctv12101zq DOI: https://doi.org/10.2307/j.ctv12101zq
Barad, K., 2014. Diffracting Diffraction: Cutting Together-Apart. Parallax [online], 20(3), 168–187. Available at: https://doi.org/10.1080/13534645.2014.927623 DOI: https://doi.org/10.1080/13534645.2014.927623
Barclay, L., 2000. Autonomy and the Social Self. In: C. Mackenzie and N. Stoljar, eds., Relational Autonomy: Feminist Perspectives on Autonomy, Agency, and the Social Self [online]. New York: Oxford University Press USA. Available at: https://doi.org/10.1093/oso/9780195123333.003.0003 DOI: https://doi.org/10.1093/oso/9780195123333.003.0003
Belfort, E.L., and Miller, L., 2018. Relationship between adolescent suicidality, self-injury, and media habits. Child and Adolescent Psychiatric Clinics [online], 27(2), 159–169. Available at: https://doi.org/10.1016/j.chc.2017.11.004 DOI: https://doi.org/10.1016/j.chc.2017.11.004
Bennett, J., 2004. The force of things: Steps toward an ecology of matter. Political Theory [online], 32(3), 347–372. Available at: https://doi.org/10.1177/0090591703260853 DOI: https://doi.org/10.1177/0090591703260853
Benson, P., 2014. Feminist Commitments and Relational Autonomy. In: A. Veltman and M. Piper, eds., Autonomy, Oppression, and Gender [online]. Oxford University Press. Available at: https://doi.org/10.1093/acprof:oso/9780199969104.003.0005 DOI: https://doi.org/10.1093/acprof:oso/9780199969104.003.0005
Bergsdóttir, A., 2017. Cyborgian entanglements: post-human feminism, diffraction and the science exhibition Bundled-up in Blue. Museum Management and Curatorship [online], 32(2), 108–122. Available at: https://doi.org/10.1080/09647775.2017.1284018 DOI: https://doi.org/10.1080/09647775.2017.1284018
Bozalek, V., and Zembylas, M., 2017. Diffraction or reflection? Sketching the contours of two methodologies in educational research. International Journal of Qualitative Studies in Education [online], 30(2), 111–127. Available at: https://doi.org/10.1080/09518398.2016.1201166 DOI: https://doi.org/10.1080/09518398.2016.1201166
Brown, M.A., et al., 2022. Echo chambers, rabbit holes, and algorithmic bias: How YouTube recommends content to real users. SSRN [online], 4114905. Available at: https://doi.org/10.2139/ssrn.4114905 DOI: https://doi.org/10.2139/ssrn.4114905
Butler, J., 1989. Foucault and the Paradox of Bodily Inscriptions. The Journal of Philosophy [online], 86(11), 601–607. Available at: https://doi.org/10.5840/jphil198986117 DOI: https://doi.org/10.5840/jphil198986117
Butler, J., 1990. Gender Trouble: Feminism and the Subversion of Identity. New York: Routledge.
Chen, Z., et al., 2024. Data Scarcity in Recommendation Systems: A Survey. ACM Transactions on Recommender Systems [online], 3(3). Available at: https://doi.org/10.1145/3639063 DOI: https://doi.org/10.1145/3639063
Conti, E., et al., 2018. Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. Advances in Neural Information Processing Systems [online], 31. Available at: https://arxiv.org/abs/1712.06560
Covington, P., Adams, J., and Sargin, E., 2016. Deep neural networks for YouTube recommendations. Proceedings of the 10th ACM Conference on Recommender Systems [online], 191–198. Available at: https://doi.org/10.1145/2959100.2959190 DOI: https://doi.org/10.1145/2959100.2959190
Cuthbert, B.N., et al., 2003. The psychophysiology of anxiety disorder: Fear memory imagery. Psychophysiology [online], 40(3), 407–422. Available at: https://doi.org/10.1111/1469-8986.00043 DOI: https://doi.org/10.1111/1469-8986.00043
Dillen, M., 2018. Time to (intra-) act [online]. Available at: http://hdl.handle.net/2105/43543
Downie, J., and Llewellyn, J.J., 2011. Being Relational: Reflections on Relational Theory and Health Law [online]. Vancouver: UBC Press. Available at: https://doi.org/10.59962/9780774821902 DOI: https://doi.org/10.59962/9780774821902
Draude, C., 2020. Boundaries Do Not Sit Still from Interaction to Agential Intra-action in HCI. In: M. Kurosu, ed., Human-Computer Interaction. Design and User Experience: Thematic Area, HCI 2020, Held as Part of the 22nd International Conference, HCII 2020 [online]. Copenhagen: Springer International, 20–32. Available at: https://doi.org/10.1007/978-3-030-49059-1_2 DOI: https://doi.org/10.1007/978-3-030-49059-1_2
Elbanna, A., 2018. Making a Difference in ICT research: Feminist theorization of sociomateriality and the diffraction methodology. In: U. Schultze et al., eds., Living with Monsters? Social Implications of Algorithmic Phenomena, Hybrid Agency, and the Performativity of Technology: IFIP WG 8.2 Working Conference on the Interaction of Information Systems and the Organization, IS&O 2018, San Francisco, CA, USA, December 11-12, 2018, Proceedings [online]. Springer, 140–155. Available at: https://doi.org/10.1007/978-3-030-04091-8_11 DOI: https://doi.org/10.1007/978-3-030-04091-8_11
Elwood, S., and Leszczynski, A., 2018. Feminist digital geographies. Gender, Place & Culture [online], 25(5), 629–644. Available at: https://doi.org/10.1080/0966369X.2018.1465396 DOI: https://doi.org/10.1080/0966369X.2018.1465396
Fang, H., et al., 2020. Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems (TOIS) [online], 39(1), 1–42. Available at: https://doi.org/10.1145/3426723 DOI: https://doi.org/10.1145/3426723
Feng, M., 2024. A Analytical and Practical Insights into Multi-Armed Bandit Problems in Recommendation Systems. Highlights in Science, Engineering and Technology [online], 94, 211–216. Available at: https://doi.org/10.54097/tg7bpm76 DOI: https://doi.org/10.54097/tg7bpm76
Feniak, H., 2021. Intra-action: Barad’s “agential realism” and modernism. In: V. Prakash, M. Casciato and D.E. Coslett, eds., Rethinking Global Modernism [online]. London: Routledge, 120–131. Available at: https://doi.org/10.4324/9781003120209-10 DOI: https://doi.org/10.4324/9781003120209-10
Fogg, B., 2009. A behavior model for persuasive design. Proceedings of the 4th International Conference on Persuasive Technology [online]. New York: Association for Computing Machinery, 1–7. Available at: https://doi.org/10.1145/1541948.1541999 DOI: https://doi.org/10.1145/1541948.1541999
Foucault, M., 1971. The order of things: An archaeology of the human sciences. New York: Vintage Books.
Foucault, M., and Sheridan, A., 1972. The archaeology of knowledge ; and, The discourse on language. New York: Pantheon Books.
Gao, L., et al., 2017. Learning in high-dimensional multimedia data: the state of the art. Multimedia Systems [online], 23, 303–313. Available at: https://doi.org/10.1007/s00530-015-0494-1 DOI: https://doi.org/10.1007/s00530-015-0494-1
Georgevici, A.I., and Terblanche, M., 2019. Neural networks and deep learning: a brief introduction. Intensive Care Medicine [online], 45(5), 712–714. Available at: https://doi.org/10.1007/s00134-019-05537-w DOI: https://doi.org/10.1007/s00134-019-05537-w
Gibson, M., 2016. YouTube and bereavement vlogging: Emotional exchange between strangers. Journal of Sociology [online], 52(4), 631–645. Available at: https://doi.org/10.1177/1440783315573613 DOI: https://doi.org/10.1177/1440783315573613
Guo, Z., Simpson, E., and Bernardi, R., 2024. Medfluencer: A Network Representation of Medical Influencers’ Identities and Discourse on Social Media. arXiv preprint [online], arXiv:2407.05198. Available at: https://doi.org/10.48550/arXiv.2407.05198
Gupta, N., et al., 2020. The plastic surgery social media influencer: ethical considerations and a literature review. Aesthetic Surgery Journal [online], 40(6), 691–699. Available at: https://doi.org/10.1093/asj/sjz329 DOI: https://doi.org/10.1093/asj/sjz329
Harris, D., 2021. Karen Barad’s feminist materialism: Intra-action and diffraction. Cambridge Scholars.
Hartsock, N., 2013. Foucault on power: a theory for women? In: L. Nicholson, ed., Feminism/postmodernism. London: Routledge, 157–175.
Hayes, A.S., and Ben-Shmuel, A.T., 2024. Under the finfluence: Financial influencers, economic meaning-making and the financialization of digital life. Economy and Society [online], 53(3), 478–503. Available at: https://doi.org/10.1080/03085147.2024.2381980 DOI: https://doi.org/10.1080/03085147.2024.2381980
Heřmanová, M., 2022. “We Are in Control”: Instagram Influencers and the Proliferation of Conspiracy Narratives in Digital Spaces. Slovenskỳ národopis [online], 70(3), 349–368. Available at: https://doi.org/10.31577/SN.2022.3.29 DOI: https://doi.org/10.31577/SN.2022.3.29
Hollin, G., et al., 2017. (Dis) entangling Barad: Materialisms and ethics. Social Studies of Science [online], 47(6), 918–941. Available at: https://doi.org/10.1177/0306312717728344 DOI: https://doi.org/10.1177/0306312717728344
Hu, G.N., et al., 2018. Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Transactions on Knowledge Discovery from Data (TKDD) [online], 12(2), 1–30. Available at: https://doi.org/10.1145/3127873 DOI: https://doi.org/10.1145/3127873
Keles, B., McCrae, N., and Grealish, A., 2020. A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. International Journal of Adolescence and Youth [online], 25(1), 79–93. Available at: https://doi.org/10.1080/02673843.2019.1590851 DOI: https://doi.org/10.1080/02673843.2019.1590851
Kwa, H.L., Leong Kit, J., and Bouffanais, R., 2022. Balancing collective exploration and exploitation in multi-agent and multi-robot systems: A review. Frontiers in Robotics and AI [online], 8, 771520. Available at: https://doi.org/10.3389/frobt.2021.771520 DOI: https://doi.org/10.3389/frobt.2021.771520
Lang, P.J., 2019. The cognitive psychophysiology of emotion: Fear and anxiety. In: A.H. Tuma and J.D. Maser, eds., Anxiety and the anxiety disorders [online]. London: Routledge, 131–170. Available at: https://doi.org/10.4324/9780203728215-10 DOI: https://doi.org/10.4324/9780203728215-10
Lavorgna, L., et al., 2018. Fake news, influencers and health-related professional participation on the Web: A pilot study on a social-network of people with Multiple Sclerosis. Multiple Sclerosis and Related Disorders [online], 25, 175–178. Available at: https://doi.org/10.1016/j.msard.2018.07.046 DOI: https://doi.org/10.1016/j.msard.2018.07.046
Lawrence, S., 2022. Digital wellness, health and fitness influencers: Critical perspectives on digital guru media [online]. London: Taylor & Francis. Available at: https://doi.org/10.4324/9781003256021 DOI: https://doi.org/10.4324/9781003256021
Mackenzie, C., 2019. Feminist innovation in philosophy: Relational autonomy and social justice. Women’s Studies International Forum [online], 72, 144–151. Available at: https://doi.org/10.1016/j.wsif.2018.05.003 DOI: https://doi.org/10.1016/j.wsif.2018.05.003
Mackenzie, C., and Stoljar, N., eds., 2000. Relational Autonomy: Feminist Perspectives on Autonomy, Agency, and the Social Self [online]. Oxford University Press. Available at: https://doi.org/10.1093/oso/9780195123333.001.0001 DOI: https://doi.org/10.1093/oso/9780195123333.001.0001
Martaningrat, N.W.S., and Kurniawan, Y., 2024. The Impact of Financial Influencers, Social Influencers, and FOMO Economy on the Decision-Making of Investment on Millennial Generation and Gen Z of Indonesia. Journal of Ecohumanism [online], 3(3), 1319–1335. Available at: https://doi.org/10.62754/joe.v3i3.3604 DOI: https://doi.org/10.62754/joe.v3i3.3604
Mauthner, N.S., 2021. Karen Barad’s posthumanist relational ontology: An intra-active approach to theorising and studying family practices. Families, Relationships and Societies [online], 10(1), 33–49. Available at: https://doi.org/10.1332/204674321X16111601839112 DOI: https://doi.org/10.1332/204674321X16111601839112
Monks-Woods, A., Andriopoulou, P., and Grogan, S., 2024. A phenomenological investigation of experiences of people who use YouTube to access support for Borderline Personality Disorder. Psychological Studies [online], 69(1), 135–144. Available at: https://doi.org/10.1007/s12646-023-00781-z DOI: https://doi.org/10.1007/s12646-023-00781-z
Montesinos López, O.A., Montesinos López, A., and Crossa, J., 2022. Fundamentals of artificial neural networks and deep learning. In: O.A. Montesinos López, A. Montesinos López and J. Crossa, Multivariate statistical machine learning methods for genomic prediction [online]. Cham: Springer, 379–425. Available at: https://doi.org/10.1007/978-3-030-89010-0_10 DOI: https://doi.org/10.1007/978-3-030-89010-0_10
Morton, T., 2013. Treating objects like women: Feminist ontology and the question of essence. In: G. Gaard, S. Estok and S. Oppermann, eds., International Perspectives in Feminist Ecocriticism [online]. New York: Routledge, 56–69. Available at: https://doi.org/10.4324/9780203520840-4 DOI: https://doi.org/10.4324/9780203520840-4
Moss, C., Wibberley, C., and Witham, G., 2023. Assessing the impact of Instagram use and deliberate self-harm in adolescents: A scoping review. International Journal of Mental Health Nursing [online], 32(1), 14–29. Available at: https://doi.org/10.1111/inm.13055 DOI: https://doi.org/10.1111/inm.13055
Munro, V.E., 2003. On power and domination: feminism and the final Foucault. European Journal of Political Theory [online], 2(1), 79–99. Available at: https://doi.org/10.1177/1474885103002001280 DOI: https://doi.org/10.1177/1474885103002001280
Närvänen, E., Kirvesmies, T., and Kahri, E., 2020. Parasocial relationships of Generation Z consumers with social media influencers. In: J. Costello and S. Yesiloglu, eds., Influencer marketing [online]. London: Routledge, 118–135. Available at: https://doi.org/10.4324/9780429322501-10 DOI: https://doi.org/10.4324/9780429322501-10
Nedelsky, J., 2011. Law’s Relations: A Relational Theory of Self, Autonomy, and Law [online]. New York: Oxford University Press USA. Available at: https://doi.org/10.1093/acprof:oso/9780195147964.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780195147964.001.0001
Ng, I.K., et al., 2024. The rise of medical influencers: The pros and the cons. Journal of the Royal College of Physicians of Edinburgh [online], 54(3), 14782715241261736. Available at: https://doi.org/10.1177/14782715241261736 DOI: https://doi.org/10.1177/14782715241261736
Parciack, R., 2023. Defeat and glory: Social media, neoliberalism and the transnational tragedy of a divinized baba. Religions [online], 14(1), 123. Available at: https://doi.org/10.3390/rel14010123 DOI: https://doi.org/10.3390/rel14010123
Raj, R., et al., 2022. Body dysmorphia and social media impact. International Journal of Health Sciences [online], 6(S3), 3725–3735. Available at: https://doi.org/10.53730/ijhs.v6nS3.6604 DOI: https://doi.org/10.53730/ijhs.v6nS3.6604
Révész, P., 2014. The laws of large numbers. Cambridge, MA: Academic Press.
Rouse, J., 2016. The conceptual and ethical normativity of intra-active phenomena. Rhizomes: Cultural studies in emerging knowledge [online], 30 (Quantum Possibilities: The Work of Karen Barad). Available at: https://doi.org/10.20415/rhiz/030.e01 DOI: https://doi.org/10.20415/rhiz/030.e01
Ruiz-Gómez, A., 2019. Digital Fame and Fortune in the age of Social Media: A Classification of social media influencers. aDResearch: Revista Internacional de Investigación en Comunicación [online], (19), 8–29. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=6785540 DOI: https://doi.org/10.7263/adresic-019-01
Salehi Rizi, F., and Granitzer, M., 2017. Properties of vector embeddings in social networks. Algorithms [online], 10(4), 109. Available at: https://doi.org/10.3390/a10040109 DOI: https://doi.org/10.3390/a10040109
Sangeorzan, I., Andriopoulou, P., and Livanou, M., 2019. Exploring the experiences of people vlogging about severe mental illness on YouTube: An interpretative phenomenological analysis. Journal of Affective Disorders [online], 246, 422–428. Available at: https://doi.org/10.1016/j.jad.2018.12.119 DOI: https://doi.org/10.1016/j.jad.2018.12.119
Sharma, A., Patel, N., and Gupta, R., 2021. Leveraging Reinforcement Learning and Multi-Armed Bandit Algorithms for Real-Time Optimization in Ad Campaign Management. European Advanced AI Journal [online], 10(2). Available at: https://eaaij.com/index.php/eaaij/article/view/10
Silva, N., et al., 2022. Multi-armed bandits in recommendation systems: A survey of the state-of-the-art and future directions. Expert Systems with Applications [online], 197, 116669. Available at: https://doi.org/10.1016/j.eswa.2022.116669 DOI: https://doi.org/10.1016/j.eswa.2022.116669
Smith, B., 2021. How TikTok Reads Your Mind. The New York Times [online], 6 Dec. Available at: https://www.nytimes.com/2021/12/05/business/media/tiktok-algorithm.html
Stamenkovic, D., et al., 2022. Choosing the best of both worlds: Diverse and novel recommendations through multi-objective reinforcement learning. Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining [online], 957–965. Available at: https://doi.org/10.1145/3488560.3498471 DOI: https://doi.org/10.1145/3488560.3498471
Stoljar, N., 2013. Feminist perspectives on autonomy. Stanford Encyclopedia of Philosophy [online]. Available at: https://plato.stanford.edu/entries/feminism-autonomy/
Stoljar, N., and Mackenzie, C., 2022. Relational autonomy in feminist bioethics. In: W.A. Rogers et al., eds., The Routledge Handbook of Feminist Bioethics [online]. New York: Routledge. Available at: https://doi.org/10.4324/9781003016885-7 DOI: https://doi.org/10.4324/9781003016885-7
Sunstein, C., 2018. # Republic: Divided democracy in the age of social media [online]. Princeton University Press. Available at: https://doi.org/10.1515/9781400890521 DOI: https://doi.org/10.1515/9781400890521
Sunstein, C.R., 2017. A prison of our own design: divided democracy in the age of social media. Democratic Audit UK [online], 3 April. Available at: https://www.democraticaudit.com/2017/04/03/a-prison-of-our-own-design-divided-democracy-in-the-age-of-social-media/
Van Wyk, A.R., 2012. What Matters Now? Review of Jane Bennett, Vibrant Matter: A Political Ecology of Things. Cosmos and History: The Journal of Natural and Social Philosophy [online], 8(2), 130–137. Available at: https://cosmosandhistory.org/index.php/journal/article/view/302
Vega, R., 2023. An Influencer Told Me So: Using Advice Response Theory to Understand Health Information on Social Media [online]. Master’s Thesis. San Diego State University. Available at: https://digitalcollections.sdsu.edu/do/b65f1c66-0ee3-4cc7-b6b8-81f5b21e26bd
Verhoeven, F.E., et al., 2011. Clinical and physiological correlates of irritability in depression: results from the Netherlands study of depression and anxiety. Depression Research and Treatment [online], 2011(1), 126895. Available at: https://doi.org/10.1155/2011/126895 DOI: https://doi.org/10.1155/2011/126895
Verlie, B., 2020. From action to intra-action? Agency, identity and ‘goals’ in a relational approach to climate change education. Environmental Education Research [online], 26(9–10), 1266–1280. https://doi.org/10.1080/13504622.2018.1497147 DOI: https://doi.org/10.1080/13504622.2018.1497147
Vieira, S., et al., 2020. Deep neural networks. Machine Learning [online], 2020, 157–172. Available at: https://doi.org/10.1016/B978-0-12-815739-8.00009-2 DOI: https://doi.org/10.1016/B978-0-12-815739-8.00009-2
Wang, X., et al., 2021. Learning intents behind interactions with knowledge graph for recommendation. Proceedings of the Web Conference [online], 2021, 878–887. Available at: https://doi.org/10.1145/3442381.3450133 DOI: https://doi.org/10.1145/3442381.3450133
Woloshyn, V., and Savage, M.J., 2020. Features of YouTubeTM videos produced by individuals who self-identify with borderline personality disorder. Digital Health [online], 6, 2055207620932336. Available at: https://doi.org/10.1177/2055207620932336 DOI: https://doi.org/10.1177/2055207620932336
Xin, X., et al., 2023. Improving implicit feedback-based recommendation through multi-behavior alignment. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval [online], 932–941. Available at: https://doi.org/10.1145/3539618.3591697 DOI: https://doi.org/10.1145/3539618.3591697
Zhang, G., et al., 2024. Scaling law of large sequential recommendation models. Proceedings of the 18th ACM Conference on Recommender Systems [online], 444–453. Available at: https://doi.org/10.1145/3640457.3688129 DOI: https://doi.org/10.1145/3640457.3688129
Zhou, J., et al., 2020. Graph neural networks: A review of methods and applications. AI open [online], 1, 57–81. Available at: https://doi.org/10.1016/j.aiopen.2021.01.001 DOI: https://doi.org/10.1016/j.aiopen.2021.01.001
Zou, L., et al., 2019. Reinforcement learning to optimize long-term user engagement in recommender systems. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining [online], 2810–2818. Available at: https://doi.org/10.1145/3292500.3330668 DOI: https://doi.org/10.1145/3292500.3330668
Zuboff, S., 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power: Barack Obama’s Books of 2019. London: Profile Books.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Will Mbioh

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores conservan el copyright de sus trabajos, que se publicarán en OSLS bajo una licencia Creative Commons Reconocimiento NoComercial SinObraDerivada. Puede consultar más detalles en: http://es.creativecommons.org/licencia/. Si no está de acuerdo con esta licencia, por favor, póngase en contacto con nosotros.
El autor concede los permisos necesarios para difundir la información bibliográfica del artículo, incluyendo el resumen, y autorizar a otros, incluyendo las bases de datos bibliográficas, de índices y servicios de alerta de contenidos, a copiar y comunicar esta información.
Para más información sobre los permisos para distribuir su artículo en cada fase de la producción, por favor, lea nuestra Política de Autoarchivo y Divulgación (en inglés).
Las condiciones de copyright con el nombre de autores y co-autores, y la licencia Creative Commons se mostrarán en el artículo. Estas condiciones se deben aceptar como parte del proceso de envío de un artículo a la revista. Por favor, asegúrese de que todos los co-autores se mencionan correctamente, y que entienden y aceptan estos términos.