Forthcoming

Beyond Possessive Agency: TikTok, YouTube, and the Inadequacies of GDPR, OSA, DSA, and AIA

Authors

DOI:

https://doi.org/10.35295/osls.iisl.2237

Keywords:

GDPR, OSA, DSA, AIA, Algorithmic Governance, Feminist New Materialism, deep neural networks, intra-action and diffraction

Abstract

This paper critiques the foundational assumption underpinning UK and EU regulations—including the GDPR, Online Safety Act, Digital Services Act, and Artificial Intelligence Act—that agency is a possessive attribute rooted in individual autonomy. Using YouTube and TikTok as case studies, it examines how advanced recommendation systems powered by deep neural networks, multi-armed bandits, and reinforcement learning blur the boundaries between user agency and platform influence. Drawing on feminist relational theory and Karen Barad’s concepts of intra-action and diffraction, the paper argues that contemporary platforms generate a distinct, relational form of agency that operates interstitially in the ‘in-between’ of user actions and algorithmic systems. This emergent directive power challenges existing law in the EU and UK concerning online safety, which position platforms as neutral tools rather than co-constitutive entities. The paper calls for a re-imagination of legal ontologies and for a shift from possessive agency to relational governance to address the complexities and risks posed by modern algorithmic assemblages.

Downloads

Download data is not yet available.

        Metrics

Global Statistics ℹ️

Cumulative totals since publication
25
Views
9
Downloads
34
Total

Author Biography

Will Mbioh, University of Kent

Dr. Will Mbioh, Senior Lecturer in Law, Kent Law School, University of Kent, Canterbury, United Kingdom

The Registry, Canterbury, Kent, CT2 7NZ

W.R.Mbioh@kent.ac.uk

References

Adomavicius, G., et al., 2021. Context-aware recommender systems: From foundations to recent developments. In: F. Ricci, L. Rokach and B. Shapira, eds., Recommender Systems Handbook [online]. Cham: Springer, 211–250. Available at: https://doi.org/10.1007/978-1-0716-2197-4_6 DOI: https://doi.org/10.1007/978-1-0716-2197-4_6

Alaimo, S., and Hekman, S.J., 2008. Material Feminisms. Bloomington: Indiana University Press.

Alter, A., 2017. Irresistible: The rise of addictive technology and the business of keeping us hooked. London: Penguin Press.

Aw, E.C.X., and Chuah, S.H.W., 2021. “Stop the unattainable ideal for an ordinary me!” fostering parasocial relationships with social media influencers: The role of self-discrepancy. Journal of Business Research [online], 132, 146–157. Available at: https://doi.org/10.1016/j.jbusres.2021.04.025 DOI: https://doi.org/10.1016/j.jbusres.2021.04.025

Baker, S.A., and Rojek, C., 2020. Lifestyle gurus: Constructing authority and influence online. Hoboken: John Wiley & Sons.

Balishyan, S., and Kompatsiaris, P., 2023. Platform Spiritualities: Entrepreneurial Selves and Post-Feminist Sensibilities of Russian Influencers. Observatorio (OBS*) [online], 17(5). Available at: https://doi.org/10.15847/obsOBS17520232420 DOI: https://doi.org/10.15847/obsOBS17520232420

Barad, K., 2003. Posthumanist performativity: Toward an understanding of how matter comes to matter. Signs: Journal of Women in Culture and Society [online], 28(3), 801–831. Available at: https://doi.org/10.1086/345321 DOI: https://doi.org/10.1086/345321

Barad, K., 2007. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning [online]. Durham: Duke University Press. Available at: https://doi.org/10.2307/j.ctv12101zq DOI: https://doi.org/10.2307/j.ctv12101zq

Barad, K., 2014. Diffracting Diffraction: Cutting Together-Apart. Parallax [online], 20(3), 168–187. Available at: https://doi.org/10.1080/13534645.2014.927623 DOI: https://doi.org/10.1080/13534645.2014.927623

Barclay, L., 2000. Autonomy and the Social Self. In: C. Mackenzie and N. Stoljar, eds., Relational Autonomy: Feminist Perspectives on Autonomy, Agency, and the Social Self [online]. New York: Oxford University Press USA. Available at: https://doi.org/10.1093/oso/9780195123333.003.0003 DOI: https://doi.org/10.1093/oso/9780195123333.003.0003

Belfort, E.L., and Miller, L., 2018. Relationship between adolescent suicidality, self-injury, and media habits. Child and Adolescent Psychiatric Clinics [online], 27(2), 159–169. Available at: https://doi.org/10.1016/j.chc.2017.11.004 DOI: https://doi.org/10.1016/j.chc.2017.11.004

Bennett, J., 2004. The force of things: Steps toward an ecology of matter. Political Theory [online], 32(3), 347–372. Available at: https://doi.org/10.1177/0090591703260853 DOI: https://doi.org/10.1177/0090591703260853

Benson, P., 2014. Feminist Commitments and Relational Autonomy. In: A. Veltman and M. Piper, eds., Autonomy, Oppression, and Gender [online]. Oxford University Press. Available at: https://doi.org/10.1093/acprof:oso/9780199969104.003.0005 DOI: https://doi.org/10.1093/acprof:oso/9780199969104.003.0005

Bergsdóttir, A., 2017. Cyborgian entanglements: post-human feminism, diffraction and the science exhibition Bundled-up in Blue. Museum Management and Curatorship [online], 32(2), 108–122. Available at: https://doi.org/10.1080/09647775.2017.1284018 DOI: https://doi.org/10.1080/09647775.2017.1284018

Bozalek, V., and Zembylas, M., 2017. Diffraction or reflection? Sketching the contours of two methodologies in educational research. International Journal of Qualitative Studies in Education [online], 30(2), 111–127. Available at: https://doi.org/10.1080/09518398.2016.1201166 DOI: https://doi.org/10.1080/09518398.2016.1201166

Brown, M.A., et al., 2022. Echo chambers, rabbit holes, and algorithmic bias: How YouTube recommends content to real users. SSRN [online], 4114905. Available at: https://doi.org/10.2139/ssrn.4114905 DOI: https://doi.org/10.2139/ssrn.4114905

Butler, J., 1989. Foucault and the Paradox of Bodily Inscriptions. The Journal of Philosophy [online], 86(11), 601–607. Available at: https://doi.org/10.5840/jphil198986117 DOI: https://doi.org/10.5840/jphil198986117

Butler, J., 1990. Gender Trouble: Feminism and the Subversion of Identity. New York: Routledge.

Chen, Z., et al., 2024. Data Scarcity in Recommendation Systems: A Survey. ACM Transactions on Recommender Systems [online], 3(3). Available at: https://doi.org/10.1145/3639063 DOI: https://doi.org/10.1145/3639063

Conti, E., et al., 2018. Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. Advances in Neural Information Processing Systems [online], 31. Available at: https://arxiv.org/abs/1712.06560

Covington, P., Adams, J., and Sargin, E., 2016. Deep neural networks for YouTube recommendations. Proceedings of the 10th ACM Conference on Recommender Systems [online], 191–198. Available at: https://doi.org/10.1145/2959100.2959190 DOI: https://doi.org/10.1145/2959100.2959190

Cuthbert, B.N., et al., 2003. The psychophysiology of anxiety disorder: Fear memory imagery. Psychophysiology [online], 40(3), 407–422. Available at: https://doi.org/10.1111/1469-8986.00043 DOI: https://doi.org/10.1111/1469-8986.00043

Dillen, M., 2018. Time to (intra-) act [online]. Available at: http://hdl.handle.net/2105/43543

Downie, J., and Llewellyn, J.J., 2011. Being Relational: Reflections on Relational Theory and Health Law [online]. Vancouver: UBC Press. Available at: https://doi.org/10.59962/9780774821902 DOI: https://doi.org/10.59962/9780774821902

Draude, C., 2020. Boundaries Do Not Sit Still from Interaction to Agential Intra-action in HCI. In: M. Kurosu, ed., Human-Computer Interaction. Design and User Experience: Thematic Area, HCI 2020, Held as Part of the 22nd International Conference, HCII 2020 [online]. Copenhagen: Springer International, 20–32. Available at: https://doi.org/10.1007/978-3-030-49059-1_2 DOI: https://doi.org/10.1007/978-3-030-49059-1_2

Elbanna, A., 2018. Making a Difference in ICT research: Feminist theorization of sociomateriality and the diffraction methodology. In: U. Schultze et al., eds., Living with Monsters? Social Implications of Algorithmic Phenomena, Hybrid Agency, and the Performativity of Technology: IFIP WG 8.2 Working Conference on the Interaction of Information Systems and the Organization, IS&O 2018, San Francisco, CA, USA, December 11-12, 2018, Proceedings [online]. Springer, 140–155. Available at: https://doi.org/10.1007/978-3-030-04091-8_11 DOI: https://doi.org/10.1007/978-3-030-04091-8_11

Elwood, S., and Leszczynski, A., 2018. Feminist digital geographies. Gender, Place & Culture [online], 25(5), 629–644. Available at: https://doi.org/10.1080/0966369X.2018.1465396 DOI: https://doi.org/10.1080/0966369X.2018.1465396

Fang, H., et al., 2020. Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. ACM Transactions on Information Systems (TOIS) [online], 39(1), 1–42. Available at: https://doi.org/10.1145/3426723 DOI: https://doi.org/10.1145/3426723

Feng, M., 2024. A Analytical and Practical Insights into Multi-Armed Bandit Problems in Recommendation Systems. Highlights in Science, Engineering and Technology [online], 94, 211–216. Available at: https://doi.org/10.54097/tg7bpm76 DOI: https://doi.org/10.54097/tg7bpm76

Feniak, H., 2021. Intra-action: Barad’s “agential realism” and modernism. In: V. Prakash, M. Casciato and D.E. Coslett, eds., Rethinking Global Modernism [online]. London: Routledge, 120–131. Available at: https://doi.org/10.4324/9781003120209-10 DOI: https://doi.org/10.4324/9781003120209-10

Fogg, B., 2009. A behavior model for persuasive design. Proceedings of the 4th International Conference on Persuasive Technology [online]. New York: Association for Computing Machinery, 1–7. Available at: https://doi.org/10.1145/1541948.1541999 DOI: https://doi.org/10.1145/1541948.1541999

Foucault, M., 1971. The order of things: An archaeology of the human sciences. New York: Vintage Books.

Foucault, M., and Sheridan, A., 1972. The archaeology of knowledge ; and, The discourse on language. New York: Pantheon Books.

Gao, L., et al., 2017. Learning in high-dimensional multimedia data: the state of the art. Multimedia Systems [online], 23, 303–313. Available at: https://doi.org/10.1007/s00530-015-0494-1 DOI: https://doi.org/10.1007/s00530-015-0494-1

Georgevici, A.I., and Terblanche, M., 2019. Neural networks and deep learning: a brief introduction. Intensive Care Medicine [online], 45(5), 712–714. Available at: https://doi.org/10.1007/s00134-019-05537-w DOI: https://doi.org/10.1007/s00134-019-05537-w

Gibson, M., 2016. YouTube and bereavement vlogging: Emotional exchange between strangers. Journal of Sociology [online], 52(4), 631–645. Available at: https://doi.org/10.1177/1440783315573613 DOI: https://doi.org/10.1177/1440783315573613

Guo, Z., Simpson, E., and Bernardi, R., 2024. Medfluencer: A Network Representation of Medical Influencers’ Identities and Discourse on Social Media. arXiv preprint [online], arXiv:2407.05198. Available at: https://doi.org/10.48550/arXiv.2407.05198

Gupta, N., et al., 2020. The plastic surgery social media influencer: ethical considerations and a literature review. Aesthetic Surgery Journal [online], 40(6), 691–699. Available at: https://doi.org/10.1093/asj/sjz329 DOI: https://doi.org/10.1093/asj/sjz329

Harris, D., 2021. Karen Barad’s feminist materialism: Intra-action and diffraction. Cambridge Scholars.

Hartsock, N., 2013. Foucault on power: a theory for women? In: L. Nicholson, ed., Feminism/postmodernism. London: Routledge, 157–175.

Hayes, A.S., and Ben-Shmuel, A.T., 2024. Under the finfluence: Financial influencers, economic meaning-making and the financialization of digital life. Economy and Society [online], 53(3), 478–503. Available at: https://doi.org/10.1080/03085147.2024.2381980 DOI: https://doi.org/10.1080/03085147.2024.2381980

Heřmanová, M., 2022. “We Are in Control”: Instagram Influencers and the Proliferation of Conspiracy Narratives in Digital Spaces. Slovenskỳ národopis [online], 70(3), 349–368. Available at: https://doi.org/10.31577/SN.2022.3.29 DOI: https://doi.org/10.31577/SN.2022.3.29

Hollin, G., et al., 2017. (Dis) entangling Barad: Materialisms and ethics. Social Studies of Science [online], 47(6), 918–941. Available at: https://doi.org/10.1177/0306312717728344 DOI: https://doi.org/10.1177/0306312717728344

Hu, G.N., et al., 2018. Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Transactions on Knowledge Discovery from Data (TKDD) [online], 12(2), 1–30. Available at: https://doi.org/10.1145/3127873 DOI: https://doi.org/10.1145/3127873

Keles, B., McCrae, N., and Grealish, A., 2020. A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. International Journal of Adolescence and Youth [online], 25(1), 79–93. Available at: https://doi.org/10.1080/02673843.2019.1590851 DOI: https://doi.org/10.1080/02673843.2019.1590851

Kwa, H.L., Leong Kit, J., and Bouffanais, R., 2022. Balancing collective exploration and exploitation in multi-agent and multi-robot systems: A review. Frontiers in Robotics and AI [online], 8, 771520. Available at: https://doi.org/10.3389/frobt.2021.771520 DOI: https://doi.org/10.3389/frobt.2021.771520

Lang, P.J., 2019. The cognitive psychophysiology of emotion: Fear and anxiety. In: A.H. Tuma and J.D. Maser, eds., Anxiety and the anxiety disorders [online]. London: Routledge, 131–170. Available at: https://doi.org/10.4324/9780203728215-10 DOI: https://doi.org/10.4324/9780203728215-10

Lavorgna, L., et al., 2018. Fake news, influencers and health-related professional participation on the Web: A pilot study on a social-network of people with Multiple Sclerosis. Multiple Sclerosis and Related Disorders [online], 25, 175–178. Available at: https://doi.org/10.1016/j.msard.2018.07.046 DOI: https://doi.org/10.1016/j.msard.2018.07.046

Lawrence, S., 2022. Digital wellness, health and fitness influencers: Critical perspectives on digital guru media [online]. London: Taylor & Francis. Available at: https://doi.org/10.4324/9781003256021 DOI: https://doi.org/10.4324/9781003256021

Mackenzie, C., 2019. Feminist innovation in philosophy: Relational autonomy and social justice. Women’s Studies International Forum [online], 72, 144–151. Available at: https://doi.org/10.1016/j.wsif.2018.05.003 DOI: https://doi.org/10.1016/j.wsif.2018.05.003

Mackenzie, C., and Stoljar, N., eds., 2000. Relational Autonomy: Feminist Perspectives on Autonomy, Agency, and the Social Self [online]. Oxford University Press. Available at: https://doi.org/10.1093/oso/9780195123333.001.0001 DOI: https://doi.org/10.1093/oso/9780195123333.001.0001

Martaningrat, N.W.S., and Kurniawan, Y., 2024. The Impact of Financial Influencers, Social Influencers, and FOMO Economy on the Decision-Making of Investment on Millennial Generation and Gen Z of Indonesia. Journal of Ecohumanism [online], 3(3), 1319–1335. Available at: https://doi.org/10.62754/joe.v3i3.3604 DOI: https://doi.org/10.62754/joe.v3i3.3604

Mauthner, N.S., 2021. Karen Barad’s posthumanist relational ontology: An intra-active approach to theorising and studying family practices. Families, Relationships and Societies [online], 10(1), 33–49. Available at: https://doi.org/10.1332/204674321X16111601839112 DOI: https://doi.org/10.1332/204674321X16111601839112

Monks-Woods, A., Andriopoulou, P., and Grogan, S., 2024. A phenomenological investigation of experiences of people who use YouTube to access support for Borderline Personality Disorder. Psychological Studies [online], 69(1), 135–144. Available at: https://doi.org/10.1007/s12646-023-00781-z DOI: https://doi.org/10.1007/s12646-023-00781-z

Montesinos López, O.A., Montesinos López, A., and Crossa, J., 2022. Fundamentals of artificial neural networks and deep learning. In: O.A. Montesinos López, A. Montesinos López and J. Crossa, Multivariate statistical machine learning methods for genomic prediction [online]. Cham: Springer, 379–425. Available at: https://doi.org/10.1007/978-3-030-89010-0_10 DOI: https://doi.org/10.1007/978-3-030-89010-0_10

Morton, T., 2013. Treating objects like women: Feminist ontology and the question of essence. In: G. Gaard, S. Estok and S. Oppermann, eds., International Perspectives in Feminist Ecocriticism [online]. New York: Routledge, 56–69. Available at: https://doi.org/10.4324/9780203520840-4 DOI: https://doi.org/10.4324/9780203520840-4

Moss, C., Wibberley, C., and Witham, G., 2023. Assessing the impact of Instagram use and deliberate self-harm in adolescents: A scoping review. International Journal of Mental Health Nursing [online], 32(1), 14–29. Available at: https://doi.org/10.1111/inm.13055 DOI: https://doi.org/10.1111/inm.13055

Munro, V.E., 2003. On power and domination: feminism and the final Foucault. European Journal of Political Theory [online], 2(1), 79–99. Available at: https://doi.org/10.1177/1474885103002001280 DOI: https://doi.org/10.1177/1474885103002001280

Närvänen, E., Kirvesmies, T., and Kahri, E., 2020. Parasocial relationships of Generation Z consumers with social media influencers. In: J. Costello and S. Yesiloglu, eds., Influencer marketing [online]. London: Routledge, 118–135. Available at: https://doi.org/10.4324/9780429322501-10 DOI: https://doi.org/10.4324/9780429322501-10

Nedelsky, J., 2011. Law’s Relations: A Relational Theory of Self, Autonomy, and Law [online]. New York: Oxford University Press USA. Available at: https://doi.org/10.1093/acprof:oso/9780195147964.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780195147964.001.0001

Ng, I.K., et al., 2024. The rise of medical influencers: The pros and the cons. Journal of the Royal College of Physicians of Edinburgh [online], 54(3), 14782715241261736. Available at: https://doi.org/10.1177/14782715241261736 DOI: https://doi.org/10.1177/14782715241261736

Parciack, R., 2023. Defeat and glory: Social media, neoliberalism and the transnational tragedy of a divinized baba. Religions [online], 14(1), 123. Available at: https://doi.org/10.3390/rel14010123 DOI: https://doi.org/10.3390/rel14010123

Raj, R., et al., 2022. Body dysmorphia and social media impact. International Journal of Health Sciences [online], 6(S3), 3725–3735. Available at: https://doi.org/10.53730/ijhs.v6nS3.6604 DOI: https://doi.org/10.53730/ijhs.v6nS3.6604

Révész, P., 2014. The laws of large numbers. Cambridge, MA: Academic Press.

Rouse, J., 2016. The conceptual and ethical normativity of intra-active phenomena. Rhizomes: Cultural studies in emerging knowledge [online], 30 (Quantum Possibilities: The Work of Karen Barad). Available at: https://doi.org/10.20415/rhiz/030.e01 DOI: https://doi.org/10.20415/rhiz/030.e01

Ruiz-Gómez, A., 2019. Digital Fame and Fortune in the age of Social Media: A Classification of social media influencers. aDResearch: Revista Internacional de Investigación en Comunicación [online], (19), 8–29. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=6785540 DOI: https://doi.org/10.7263/adresic-019-01

Salehi Rizi, F., and Granitzer, M., 2017. Properties of vector embeddings in social networks. Algorithms [online], 10(4), 109. Available at: https://doi.org/10.3390/a10040109 DOI: https://doi.org/10.3390/a10040109

Sangeorzan, I., Andriopoulou, P., and Livanou, M., 2019. Exploring the experiences of people vlogging about severe mental illness on YouTube: An interpretative phenomenological analysis. Journal of Affective Disorders [online], 246, 422–428. Available at: https://doi.org/10.1016/j.jad.2018.12.119 DOI: https://doi.org/10.1016/j.jad.2018.12.119

Sharma, A., Patel, N., and Gupta, R., 2021. Leveraging Reinforcement Learning and Multi-Armed Bandit Algorithms for Real-Time Optimization in Ad Campaign Management. European Advanced AI Journal [online], 10(2). Available at: https://eaaij.com/index.php/eaaij/article/view/10

Silva, N., et al., 2022. Multi-armed bandits in recommendation systems: A survey of the state-of-the-art and future directions. Expert Systems with Applications [online], 197, 116669. Available at: https://doi.org/10.1016/j.eswa.2022.116669 DOI: https://doi.org/10.1016/j.eswa.2022.116669

Smith, B., 2021. How TikTok Reads Your Mind. The New York Times [online], 6 Dec. Available at: https://www.nytimes.com/2021/12/05/business/media/tiktok-algorithm.html

Stamenkovic, D., et al., 2022. Choosing the best of both worlds: Diverse and novel recommendations through multi-objective reinforcement learning. Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining [online], 957–965. Available at: https://doi.org/10.1145/3488560.3498471 DOI: https://doi.org/10.1145/3488560.3498471

Stoljar, N., 2013. Feminist perspectives on autonomy. Stanford Encyclopedia of Philosophy [online]. Available at: https://plato.stanford.edu/entries/feminism-autonomy/

Stoljar, N., and Mackenzie, C., 2022. Relational autonomy in feminist bioethics. In: W.A. Rogers et al., eds., The Routledge Handbook of Feminist Bioethics [online]. New York: Routledge. Available at: https://doi.org/10.4324/9781003016885-7 DOI: https://doi.org/10.4324/9781003016885-7

Sunstein, C., 2018. # Republic: Divided democracy in the age of social media [online]. Princeton University Press. Available at: https://doi.org/10.1515/9781400890521 DOI: https://doi.org/10.1515/9781400890521

Sunstein, C.R., 2017. A prison of our own design: divided democracy in the age of social media. Democratic Audit UK [online], 3 April. Available at: https://www.democraticaudit.com/2017/04/03/a-prison-of-our-own-design-divided-democracy-in-the-age-of-social-media/

Van Wyk, A.R., 2012. What Matters Now? Review of Jane Bennett, Vibrant Matter: A Political Ecology of Things. Cosmos and History: The Journal of Natural and Social Philosophy [online], 8(2), 130–137. Available at: https://cosmosandhistory.org/index.php/journal/article/view/302

Vega, R., 2023. An Influencer Told Me So: Using Advice Response Theory to Understand Health Information on Social Media [online]. Master’s Thesis. San Diego State University. Available at: https://digitalcollections.sdsu.edu/do/b65f1c66-0ee3-4cc7-b6b8-81f5b21e26bd

Verhoeven, F.E., et al., 2011. Clinical and physiological correlates of irritability in depression: results from the Netherlands study of depression and anxiety. Depression Research and Treatment [online], 2011(1), 126895. Available at: https://doi.org/10.1155/2011/126895 DOI: https://doi.org/10.1155/2011/126895

Verlie, B., 2020. From action to intra-action? Agency, identity and ‘goals’ in a relational approach to climate change education. Environmental Education Research [online], 26(9–10), 1266–1280. https://doi.org/10.1080/13504622.2018.1497147 DOI: https://doi.org/10.1080/13504622.2018.1497147

Vieira, S., et al., 2020. Deep neural networks. Machine Learning [online], 2020, 157–172. Available at: https://doi.org/10.1016/B978-0-12-815739-8.00009-2 DOI: https://doi.org/10.1016/B978-0-12-815739-8.00009-2

Wang, X., et al., 2021. Learning intents behind interactions with knowledge graph for recommendation. Proceedings of the Web Conference [online], 2021, 878–887. Available at: https://doi.org/10.1145/3442381.3450133 DOI: https://doi.org/10.1145/3442381.3450133

Woloshyn, V., and Savage, M.J., 2020. Features of YouTubeTM videos produced by individuals who self-identify with borderline personality disorder. Digital Health [online], 6, 2055207620932336. Available at: https://doi.org/10.1177/2055207620932336 DOI: https://doi.org/10.1177/2055207620932336

Xin, X., et al., 2023. Improving implicit feedback-based recommendation through multi-behavior alignment. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval [online], 932–941. Available at: https://doi.org/10.1145/3539618.3591697 DOI: https://doi.org/10.1145/3539618.3591697

Zhang, G., et al., 2024. Scaling law of large sequential recommendation models. Proceedings of the 18th ACM Conference on Recommender Systems [online], 444–453. Available at: https://doi.org/10.1145/3640457.3688129 DOI: https://doi.org/10.1145/3640457.3688129

Zhou, J., et al., 2020. Graph neural networks: A review of methods and applications. AI open [online], 1, 57–81. Available at: https://doi.org/10.1016/j.aiopen.2021.01.001 DOI: https://doi.org/10.1016/j.aiopen.2021.01.001

Zou, L., et al., 2019. Reinforcement learning to optimize long-term user engagement in recommender systems. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining [online], 2810–2818. Available at: https://doi.org/10.1145/3292500.3330668 DOI: https://doi.org/10.1145/3292500.3330668

Zuboff, S., 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power: Barack Obama’s Books of 2019. London: Profile Books.

Published

27-03-2025

How to Cite

Mbioh, W. (2025) “Beyond Possessive Agency: TikTok, YouTube, and the Inadequacies of GDPR, OSA, DSA, and AIA”, Oñati Socio-Legal Series. doi: 10.35295/osls.iisl.2237.

Issue

Section

Individual Articles