Forthcoming

From minds to law

Agent-based modeling and the interplay between cognition, society, and the legal world

Authors

  • Nicola Lettieri University of Sannio
  • Ilaria Pica University of Sannio

DOI:

https://doi.org/10.35295/osls.iisl.2311

Keywords:

Cognition, Agent-based models, Complexity theory, Computational legal studies, Computational social science

Abstract

The paper presents the computer simulation of social phenomena as a promising method to investigate the links tying human cognition, society and law. The focus is on agent-based modeling, a research methodology that is offering new ways to explore how the interaction between individuals (and the cognitive mechanisms governing their decisions) leads to the emergence and evolution of complex, macro-level social constructs from opinion dynamics to social norms. After a brief introduction to the theoretical and methodological framework underlying the proposal - a landscape shaped by cognitive sciences, complexity theory and computational social science - the paper delves into the basic features of agent-based simulations. It then explores the applications of this methodology in the study of legally relevant phenomena, like social norms emergence or the effects of sanctions. The review serves as an opportunity to reflect not only on the scientific and methodological frontiers of legal sociology but also on the perspectives of empirical evolution of legal science.

Downloads

Download data is not yet available.

        Metrics

Global Statistics ℹ️

Cumulative totals since publication
17
Views
20
Downloads
37
Total

Author Biography

Ilaria Pica, University of Sannio

Department of Law, Economics, Management and Quantitative Methods University of Sannio. P.zza Arechi II, 82100, Benevento 

Email: ilaria.pica@hotmail.it

References

Alemanno, A., and Sibony, A.L., eds., 2015. Nudge and the law: A European perspective. Oxford: Bloomsbury.

Anderson, C., 2008, The end of theory: The data deluge makes the scientific method obsolete. Wired magazine [online], 16(7), 16-07. Available at: https://www.wired.com/2008/06/pb-theory/

Andrighetto, G., et al., 2007. On the immergence of norms: A normative agent architecture. AAAI Fall Symposium: Emergent Agents and Socialities [online], 11-18. Available at: https://cdn.aaai.org/Symposia/Fall/2007/FS-07-04/FS07-04-003.pdf

Andrighetto, G., et al., 2010. The complex loop of norm emergence: A simulation model. In: K. Takadama, C. Cioffi and G. Deffuant, eds., Simulating Interacting Agents and Social Phenomena: The Second World Congress. Springer Tokyo, 19-35. DOI: https://doi.org/10.1007/978-4-431-99781-8_2

Anzola, D., 2021. Capturing the representational and the experimental in the modelling of artificial societies. European Journal for Philosophy of Science [online], 11(3), 63. Available at: https://doi.org/10.1007/s13194-021-00382-5 DOI: https://doi.org/10.1007/s13194-021-00382-5

Anzola, D., and García-Díaz, C., 2023. What kind of prediction? Evaluating different facets of prediction in agent-based social simulation. International Journal of Social Research Methodology [online], 26(2), 171-191. Available at: https://doi.org/10.1080/13645579.2022.2137919 DOI: https://doi.org/10.1080/13645579.2022.2137919

Axelrod, R., 1984. The Evolution of Cooperation. New York: Basic Books.

Axelrod, R., 1986. An evolutionary approach to norms. American Political Science Review, 80(4), 1095-1111. DOI: https://doi.org/10.2307/1960858

Axtell, R.L., et al., 2002. Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences [online], 99(suppl_3), 7275-7279. Available at: https://doi.org/10.1073/pnas.092080799 DOI: https://doi.org/10.1073/pnas.092080799

Bench-Capon, T., and Sartor, G., 2003. A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence [online], 150(1-2), 97-143. Available at: https://doi.org/10.1016/S0004-3702(03)00108-5 DOI: https://doi.org/10.1016/S0004-3702(03)00108-5

Benthall, S., and Strandburg, K.J., 2021. Agent-based modeling as a legal theory tool. Frontiers in Physics [online], 9, 666386. Available at: https://doi.org/10.3389/fphy.2021.666386 DOI: https://doi.org/10.3389/fphy.2021.666386

Boella, G., and van der Torre, L., 2004. Regulative and constitutive norms in normative multiagent systems [online]. Available at: https://cdn.aaai.org/KR/2004/KR04-028.pdf

Bratton, B.H., 2016. The stack: On software and sovereignty [online]. Cambridge, MA: MIT Press. Available at: https://doi.org/10.7551/mitpress/9780262029575.001.0001 DOI: https://doi.org/10.7551/mitpress/9780262029575.001.0001

Byrne, D., and Callaghan, G., 2022. Complexity Theory and the Social Sciences: The State of the Art [online]. London: Routledge. Available at: https://doi.org/10.4324/9781003213574 DOI: https://doi.org/10.4324/9781003213574

Cane, P., and Kritzer, H.M., eds., 2010. The Oxford Handbook of Empirical Legal Research [online]. Oxford University Press. Available at: https://doi.org/10.1093/oxfordhb/9780199542475.001.0001 DOI: https://doi.org/10.1093/oxfordhb/9780199542475.001.0001

Carillo, M., et al., 2013. Sociality, Sanctions, Damaging Behaviors: A Distributed Implementation of an Agent-Based Social Simulation Model. In: D. Mey et al., eds., Euro-Par 2013: Parallel Processing Workshops. Euro-Par 2013. Lecture Notes in Computer Science (vol 8374) [online]. Berlin/Heidelberg: Springer, 595-604. Available at: https://doi.org/10.1007/978-3-642-54420-0_58 DOI: https://doi.org/10.1007/978-3-642-54420-0_58

Cioffi-Revilla, C., 2010. Computational social science. Wiley Interdisciplinary Reviews: Computational Statistics [online], 2(3), 259-271. Available at: https://doi.org/10.1002/wics.95 DOI: https://doi.org/10.1002/wics.95

Cioffi-Revilla, C., 2014. Introduction to Computational Social Science. Springer London. DOI: https://doi.org/10.1007/978-1-4471-5661-1

Cominelli, L., 2018. Cognition and the Law [online]. Cham: Springer International. Available at: https://doi.org/10.1007/978-3-319-89348-8 DOI: https://doi.org/10.1007/978-3-319-89348-8

Conte, A.G., 2007. Norma: cinque referenti. In: L. Passerini Glazel, ed., Ricerche di Filosofia del diritto. Turin: Giappichelli, 27–35.

Conte, R., and Castelfranchi, C., 2006. Understanding the functions of norms in social groups through simulation. In: N. Gilbert and R. Conte, eds., Artificial Societies [online]. London: Routledge, 225-238. Available at: https://doi.org/10.4324/9780203993699-22 DOI: https://doi.org/10.4324/9780203993699-22

Conte, R., and Paolucci, M., 2014. On agent-based modeling and computational social science. Frontiers in Psychology [online], 5, 668. Available at: https://doi.org/10.3389/fpsyg.2014.00668 DOI: https://doi.org/10.3389/fpsyg.2014.00668

Conte, R., Andrighetto, G., and Campennì, M., eds., 2014. Minding Norms: Mechanisms and Dynamics of Social Order in Agent Societies [online]. Oxford University Press. Available at: https://doi.org/10.1093/acprof:oso/9780199812677.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780199812677.001.0001

Conte, R., et al., 2012. Manifesto of computational social science. The European Physical Journal Special Topics, 214, 325-346. DOI: https://doi.org/10.1140/epjst/e2012-01697-8

Della Porta, D., and Keating, M., eds., 2008. Approaches and Methodologies in the Social Sciences: A Pluralist Perspective [online]. Cambridge University Press. Available at: https://doi.org/10.1017/CBO9780511801938 DOI: https://doi.org/10.1017/CBO9780511801938

Eckstein, H., 1998. Unfinished business: Reflections on the scope of comparative politics. Comparative Political Studies [online], 31(4), 505-534. Available at: https://doi.org/10.1177/0010414098031004006 DOI: https://doi.org/10.1177/0010414098031004006

Edelmann, A., et al., 2020. Computational social science and sociology. Annual Review of Sociology [online], 46(1), 61-81. Available at: https://doi.org/10.1146/annurev-soc-121919-054621 DOI: https://doi.org/10.1146/annurev-soc-121919-054621

Elsenbroich, C., and Gilbert, N., 2014. Modelling Norms [online]. Dordrecht: Springer Netherlands. Available at: https://doi.org/10.1146/annurev-soc-121919-054621 DOI: https://doi.org/10.1007/978-94-007-7052-2_10

Elsenbroich, C., Anzola, D., and Gilbert, N., eds., 2017. Social dimensions of organized crime: Modelling the dynamics of extortion rackets [online]. Cham: Springer. Available at: https://doi.org/10.1007/978-3-319-45169-5 DOI: https://doi.org/10.1007/978-3-319-45169-5

Epstein, J.M., 2002. Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences [online], 99(Suppl. 3), 7243–7250. Available at: https://doi.org/10.1073/pnas.092080199 DOI: https://doi.org/10.1073/pnas.092080199

Epstein, J.M., 2008. Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12.

Eubank, S., et al., 2004. Modelling disease outbreaks in realistic urban social networks. Nature [online], 429(6988), 180-184. Available at: https://doi.org/10.1038/nature02541 DOI: https://doi.org/10.1038/nature02541

Flache, A., Mäs, M., and Keijzer, M.A., 2022. Computational approaches in rigorous sociology: agent-based computational modeling and computational social science. In: K. Gërxhani, N. de Graaf and W. Raub, eds., Handbook of Sociological Science [online]. Cheltenham: Edward Elgar, 57-72. Available at: https://doi.org/10.4337/9781789909432.00011 DOI: https://doi.org/10.4337/9781789909432.00011

Gerritsen, C., and Elffers, H., 2020. Agent-Based Modelling for Criminological Theory Testing and Development [online]. London: Routledge. Available at: https://doi.org/10.4324/9780429277177 DOI: https://doi.org/10.4324/9780429277177

Gneezy, U., and Rustichini, A., 2000. A fine is a price. The Journal of Legal Studies [online], 29(1), 1-17. Available at: https://doi.org/10.1086/468061 DOI: https://doi.org/10.1086/468061

Goodenough, O.R., and Tucker, M., 2010. Law and cognitive neuroscience. Annual Review of Law and Social Science [online], 6(1), 61-92. Available at: https://doi.org/10.1146/annurev.lawsocsci.093008.131523 DOI: https://doi.org/10.1146/annurev.lawsocsci.093008.131523

Greene, J., and Cohen, J., 2004. For the law, neuroscience changes nothing and everything. Philosophical Transactions of the Royal Society B: Biological Sciences [online], 359(1451), 1775. Available at: https://doi.org/10.1098/rstb.2004.1546 DOI: https://doi.org/10.1098/rstb.2004.1546

Grim, P., et al., 2024. The Epistemic Role of Diversity in Juries: An Agent-Based Model. Journal of Artificial Societies and Social Simulation [online], 27(1), 12. Available at: https://doi.org/10.18564/jasss.5304 DOI: https://doi.org/10.18564/jasss.5304

Humphreys, P., 2004. Extending Ourselves: Computational Science, Empiricism, and Scientific Method [online]. Oxford University Press. Available at: https://doi.org/10.1093/0195158709.001.0001 DOI: https://doi.org/10.1093/0195158709.001.0001

Humphreys, P., 2016. Emergence: A philosophical account [online]. Oxford University Press. Available at: https://doi.org/10.1093/acprof:oso/9780190620325.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780190620325.001.0001

Kauffman, S.A., 1995. At home in the universe: The search for laws of self-organization and complexity. Oxford University Press.

Keuschnigg, M., Lovsjö, N., and Hedström, P., 2018, Analytical sociology and computational social science. Journal of Computational Social Science [online], 1, 3-14. Available at: https://doi.org/10.1007/s42001-017-0006-5 DOI: https://doi.org/10.1007/s42001-017-0006-5

Kitchin, R., 2014. Big Data, new epistemologies and paradigm shifts. Big data and society [online], 1(1), 2053951714528481. Available at: https://doi.org/10.1177/2053951714528481 DOI: https://doi.org/10.1177/2053951714528481

Koppl, R., et al., 2015. Economics for a creative world. Journal of Institutional Economics [online]. 11(1), 1-31. Available at: https://doi.org/10.1017/S1744137414000150 DOI: https://doi.org/10.1017/S1744137414000150

Lazer, D., et al., 2009. Computational social science. Science [online], 323(5915), 721-723. Available at: https://www.science.org/doi/10.1126/science.1167742 DOI: https://doi.org/10.1126/science.1167742

Letteri N., 2024. On the high open sea. Computational empiricism and the naturalization of law. Italian Law Journal, 9, 653.

Lettieri, N, 2020b. Law, rights, and the fallacy of computation. On the hidden pitfalls of predictive analytics. Jura Gentium: Rivista di filosofia del diritto internazionale e della politica globale [online], 17(2), 72-87. Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=7891251

Lettieri, N., 2013. Ius in Silico: Diritto Computazione Simulazione. Naples: Edizioni Scientifiche Italiane.

Lettieri, N., 2016. Computational social science, the evolution of policy design and rule making in smart societies. Future Internet [online], 8(2), 19. Available at: https://doi.org/10.3390/fi8020019 DOI: https://doi.org/10.3390/fi8020019

Lettieri, N., 2020. Law in Turing’s Cathedral: Notes on the algorithmic turn of the legal universe. In: W. Barfield, ed., The Cambridge Handbook of the Law of Algorithms. Cambridge University Press. DOI: https://doi.org/10.1017/9781108680844.033

Lettieri, N., and Faro, S., 2015. Diritto, Neuroscienze, Scienze della Cognizione. Naples: Edizioni Scientifiche Italiane.

Lettieri, N., and Parisi, D., 2013. Neminem laedere: An evolutionary agent-based model of the interplay between punishment and damaging behaviours. Artificial Intelligence and Law [online], 21, 425-453. Available at: https://doi.org/10.1007/s10506-013-9146-y DOI: https://doi.org/10.1007/s10506-013-9146-y

Lettieri, N., and Pluchino, A., 2024. Hammer or telescope? Challenges and opportunities of science-oriented AI in legal and sociolegal research. Frontiers in Artificial Intelligence [online], 7, 1333219. Available at: https://doi.org/10.3389/frai.2024.1333219 DOI: https://doi.org/10.3389/frai.2024.1333219

Lettieri, N., and Vestoso, M., 2015. Simulating the core dynamics of a social dilemma: Individual choices, time, and sanctions in the tragedy of the commons. In: E. Tambouris et al., eds., Electronic Government and Electronic Participation [online]. Amsterdam: IOS Press, 53-62. Available at: https://doi.org/10.3233/978-1-61499-570-8-53 DOI: https://doi.org/10.3233/978-1-61499-570-8-53

Lettieri, N., et al., 2017. Agents shaping networks shaping agents: Integrating social network analysis and agent-based modeling in computational crime research. In: E. Oliveira et al., eds., Epia conference on artificial intelligence [online]. Cham: Springer International, 15-27. Available at: https://doi.org/10.1007/978-3-319-65340-2_2 DOI: https://doi.org/10.1007/978-3-319-65340-2_2

Lettieri, N., Spagnuolo, C., and Vicidomini, L., 2015. Distributed agent-based simulation and GIS: an experiment with the dynamics of social norms. In: S. Hunold et al., European Conference on Parallel Processing [online]. Cham: Springer International, 379-391. Available at: https://doi.org/10.1007/978-3-319-27308-2_31 DOI: https://doi.org/10.1007/978-3-319-27308-2_31

Lie, R.H., and Langford, M., 2024. The Computational Turn in International Law. Nordic Journal of International Law [online], 93(1), 38-67. Available at: https://doi.org/10.1163/15718107-bja10081 DOI: https://doi.org/10.1163/15718107-bja10081

Loftus, E.F., 1996. Eyewitness Testimony. Harvard University Press. DOI: https://doi.org/10.1007/978-1-349-24483-6_46

Longo, G., Montévil, M., and Kauffman, S., 2012, J. No entailing laws, but enablement in the evolution of the biosphere. Proceedings of the 14th annual conference companion on Genetic and evolutionary computation [online], 1379-1392. Available at: https://doi.org/10.1145/2330784.2330946 DOI: https://doi.org/10.1145/2330784.2330946

Lorenz, E.N., 1963. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences [online], 20(2), 130-141. Available at: https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2 DOI: https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Louth, J., 2011. From Newton to Newtonianism: Reductionism and the development of the social sciences. Emergence: Complexity & Organization, 13(4).

Luckner, K., and Fikfak, V., 2021. Applications of ABM in international legal research. AMPM’21: First Workshop in Agent-based Modelling & Policy-Making [online]. December 8, Vilnius. Available at: https://ceur-ws.org/Vol-3182/paper5.pdf

Macy, M.W., and Willer, R., 2002. From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology [online], 28(1), 143-166. Available at: https://doi.org/10.1146/annurev.soc.28.110601.141117 DOI: https://doi.org/10.1146/annurev.soc.28.110601.141117

Mitchell, M., 2009. Complexity: A Guided Tour. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195124415.001.0001

Moore, S.F., 2000. Law as Process: An Anthropological Approach. Oxford: James Currey.

Neumann, M., and Elsenbroich, C., eds., 2017. The societal dimensions of organized crime [Special issue]. Trends in Organized Crime [online], 20(1). Available at: https://doi.org/10.1007/s12117-016-9294-z DOI: https://doi.org/10.1007/s12117-016-9294-z

O’Neil, C., 2017. Weapons of math destruction: How big data increases inequality and threatens democracy. New York: Crown.

Page, S.E., 2015. What sociologists should know about complexity. Annual Review of Sociology [online], 41(1), 21-41. Available at: https://doi.org/10.1146/annurev-soc-073014-112230 DOI: https://doi.org/10.1146/annurev-soc-073014-112230

Parisi, D., 2010. Simulazioni: la realtà rifatta nel computer. Bologna: Il Mulino.

Passerini Glazel, L., 2019. Deontic Noema. A Contribution to a Theoretical Analysis of Normative Experience. In: O. Stovba, N. Satokhina and R.E.S. Martins, eds., The Experience of Law: Collection of Articles and Essays. Kharkiv: Оleg Miroshnychenko, 59-77.

Pluchino, A., 2015. La firma della complessità: Una passeggiata al margine del caos. Malcor D’.

Rand, W., et al., 2015. An agent-based model of urgent diffusion in social media. Journal of Artificial Societies and Social Simulation [online], 18(2), 1. Available at: https://www.jasss.org/18/2/1.html DOI: https://doi.org/10.18564/jasss.2616

Savarimuthu, B.T.R., and Cranefield, S., 2011. Norm creation, spreading, and emergence: A survey of simulation models of norms in multi-agent systems. Multiagent and Grid Systems [online], 7(1), 21-54. Available at: https://doi.org/10.3233/MGS-2011-0167 DOI: https://doi.org/10.3233/MGS-2011-0167

Schwartz, A., 2020. Agent-based modeling for legal studies. In: R. Whalen, ed., Computational Legal Studies [online]. Cheltenham: Edward Elgar, 312-327. Available at: https://doi.org/10.4337/9781788977456.00019 DOI: https://doi.org/10.4337/9781788977456.00019

Shavell, S., 2004. Foundations of Economic Analysis of Law [online]. Harvard University Press. Available at: https://doi.org/10.4159/9780674043497 DOI: https://doi.org/10.4159/9780674043497

Sieburg, H.B., 2018. Physiological studies in silico. In: L. Nadel and D.I. Stein, eds., 1990 Lectures in Complex Systems [online]. Boca Raton: CRC Press, 367-390. Available at: https://doi.org/10.1201/9780429503573-15 DOI: https://doi.org/10.1201/9780429503573-15

Sil, R., 2000. The foundations of eclecticism: The epistemological status of agency, culture, and structure in social theory. Journal of Theoretical Politics [online], 12(3), 353-387. Available at: https://doi.org/10.1177/0951692800012003005 DOI: https://doi.org/10.1177/0951692800012003005

Sileno, G., Becker, C., and Lettieri, N., eds., 2021. Proceedings of the 1st Workshop on Agent-based Modeling and Policy-Making (AMPM 2021). CEUR Workshop Proceedings (Vol. 3182) [online]. Vilnius. Available at: https://ceur-ws.org/Vol-3182/

Sileno, G., Becker, C., and Lettieri, N., eds., 2022. Proceedings of the 2nd Workshop on Agent-based Modeling and Policy-Making (AMPM 2022). CEUR Workshop Proceedings (Vol. 3420) [online]. Saarbrücken. Available at: https://ceur-ws.org/Vol-3420/

Simon, H.A., 2019,. The Sciences of the Artificial. Reissue of the third edition with a new introduction by John Laird. Cambridge, MA: MIT Press.

Squazzoni, F., 2012. Agent-based computational sociology [online]. Hoboken: John Wiley & Sons. Available at: https://doi.org/10.1002/9781119954200 DOI: https://doi.org/10.1002/9781119954200

Székely, Á., Nardin, L.G., and Andrighetto, G., 2018. Countering protection rackets using legal and social approaches: An agent‐based test. Complexity [online], 2018, article 3568085. Available at: https://doi.org/10.1155/2018/3568085 DOI: https://doi.org/10.1155/2018/3568085

Wallach, H., 2018. Computational social science≠ computer science+ social data. Communications of the ACM [online], 61(3), 42-44. Available at: https://doi.org/10.1145/3132698 DOI: https://doi.org/10.1145/3132698

Winsberg, E., 2019. Science in the age of computer simulation. University of Chicago Press.

Xenitidou, M., and Edmonds, B., eds., 2014. The Complexity of Social Norms [online]. Cham: Springer International. Available at: https://doi.org/10.1007/978-3-319-05308-0 DOI: https://doi.org/10.1007/978-3-319-05308-0

Zaccagnino, R., et al., 2025. Turning AI into a regulatory sandbox: exploring information disorder mitigation strategies with ABM and deep reinforcement learning. Neural Computing and Applications [online], 1-42. Available at: https://doi.org/10.1007/s00521-025-11342-y DOI: https://doi.org/10.1007/s00521-025-11342-y

Published

13-10-2025

How to Cite

Lettieri, N. and Pica, I. (2025) “From minds to law: Agent-based modeling and the interplay between cognition, society, and the legal world ”, Oñati Socio-Legal Series. doi: 10.35295/osls.iisl.2311.

Issue

Section

Thematic Articles